599 research outputs found

    The non-marine gammarids of the Balearic Islands

    Get PDF

    Neutral Pions and Eta Mesons as Probes of the Hadronic Fireball in Nucleus-Nucleus Collisions around 1A GeV

    Full text link
    Chemical and thermal freeze-out of the hadronic fireball formed in symmetric collisions of light, intermediate-mass, and heavy nuclei at beam energies between 0.8A GeV and 2.0A GeV are discussed in terms of an equilibrated, isospin-symmetric ideal hadron gas with grand-canonical baryon-number conservation. For each collision system the baryochemical potential mu_B and the chemical freeze-out temperature T_c are deduced from the inclusive neutral pion and eta yields which are augmented by interpolated data on deuteron production. With increasing beam energy mu_B drops from 800 MeV to 650 MeV, while T_c rises from 55 MeV to 90 MeV. For given beam energy mu_B grows with system size, whereas T_c remains constant. The centrality dependence of the freeze-out parameters is weak as exemplified by the system Au+Au at 0.8A GeV. For the highest beam energies the fraction of nucleons excited to resonance states reaches freeze-out values of nearly 15 %, suggesting resonance densities close to normal nuclear density at maximum compression. In contrast to the particle yields, which convey the status at chemical freeze-out, the shapes of the related transverse-mass spectra do reflect thermal freeze-out. The observed thermal freeze-out temperatures T_th are equal to or slightly lower than T_c, indicative of nearly simultaneous chemical and thermal freeze-out.Comment: 42 pages, 12 figure

    Pion-Production in Heavy-Ion Collisions at SIS energies

    Full text link
    We investigate the production of pions in heavy-ion collisions in the energy range of 11 - 22 GeV/A. The dynamics of the nucleus-nucleus collisions is described by a set of coupled transport equations of the Boltzmann-Uehling-Uhlenbeck type for baryons and mesons. Besides the N(938)N(938) and the Δ(1232)\Delta(1232) we also take into account nucleon resonances up to masses of 1.9GeV/c21.9 GeV/c^2 as well as π\pi-, η\eta- and ρ\rho-mesons. We study in detail the influence of the higher baryonic resonances and the 2π2\pi-production channels (NNNNππNN\to NN \pi\pi) on the pion spectra in comparison to π\pi^- data from Ar+KClAr + KCl collisions at 1.81.8 GeV/A and π0\pi^0-data for Au+AuAu+Au at 1.0 GeV/A. We, furthermore, present a detailed comparison of differential pion angular distributions with the BEVALAC data for Ar + KCl at 1.8 GeV/A. The general agreement obtained indicates that the overall reactions dynamics is well described by our novel transport approach.Comment: 31 pages, 18 figures (inlcuded), to appear in Z. Phys.

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC

    Measurement of the parity-violating longitudinal single-spin asymmetry for W±W^{\pm} boson production in polarized proton-proton collisions at s=500\sqrt{s} = 500 GeV

    Get PDF
    We report the first measurement of the parity violating single-spin asymmetries for midrapidity decay positrons and electrons from W+W^{+} and WW^{-} boson production in longitudinally polarized proton-proton collisions at s=500\sqrt{s}=500 GeV by the STAR experiment at RHIC. The measured asymmetries, ALW+=0.27±0.10  (stat.)±0.02  (syst.)±0.03  (norm.)A^{W^+}_{L}=-0.27\pm 0.10\;({\rm stat.})\pm 0.02\;({\rm syst.}) \pm 0.03\;({\rm norm.}) and ALW=0.14±0.19  (stat.)±0.02  (syst.)±0.01  (norm.)A^{W^-}_{L}=0.14\pm 0.19\;({\rm stat.})\pm 0.02 \;({\rm syst.})\pm 0.01\;({\rm norm.}), are consistent with theory predictions, which are large and of opposite sign. These predictions are based on polarized quark and antiquark distribution functions constrained by polarized DIS measurements.Comment: 6 pages, 4 figures, submitted to Physics Review Letter

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(Be)+(BDe)dyeye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσDedyeye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.

    Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV

    Get PDF
    We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage [-1.3, 1.3]. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes.Comment: 6 pages, 3 figure
    corecore